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SUMMARY

An upstream �ux-splitting �nite-volume (UFF) scheme is proposed for the solutions of the 2D shallow
water equations. In the framework of the �nite-volume method, the arti�cially upstream �ux vector
splitting method is employed to establish the numerical �ux function for the local Riemann problem.
Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed
scheme satisfying entropy condition is extended to be second-order-accurate using the MUSCL approach.
The proposed UFF scheme and its second-order extension are veri�ed through the simulations of four
shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the
circular dam breaking, and the dam-break experiment with 45◦ bend channel. Meanwhile, the numerical
performance of the UFF scheme is compared with those of three well-known upwind schemes, namely
the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably
well for shallow water �ows. The simulated results also show that the UFF scheme has superior overall
numerical performances among the schemes tested. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: shallow water equations; �nite-volume method; arti�cially upstream �ux vector splitting
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1. INTRODUCTION

The two-dimensional (2D) shallow water equations (SWE) are a system of hyperbolic con-
servation laws. The numerical schemes for solving 2D SWE require special considerations
for achieving conservative and shock-capturing properties. Many shock-capturing schemes for
hyperbolic conservation laws have been proposed in References [1–5]. These schemes resolve
discontinuities without spurious oscillations and perform remarkably well in smooth regions.
Most of them are the upwind schemes, which are commonly used to discretize hyperbolic
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equations according to the direction of wave propagation. The upwind shock-capturing schemes
can be generally categorized into two classes: the �ux-di�erence splitting (FDS) scheme and
the �ux-vector splitting (FVS) scheme [1, 2]. The FDS-type schemes use an approximate so-
lution of the local Riemann problem, such as the Osher scheme, the Roe scheme, the Harten,
Lax and van Leer (HLL) scheme, etc. The FVS-type schemes split the �ux vector into pos-
itive and negative parts, such as the van Leer splitting (VLS) scheme, the Steger–Warming
splitting (SWS) scheme, the local Lax-Friedrichs splitting (LLFS) scheme, etc.
In recent years, these shock-capturing upwind schemes have been applied to the solutions

of the 2D SWE based on the �nite-volume method (FVM). For instance, the �rst-order Osher
scheme is used by Zhao et al. [6] and Wan et al. [7]; the second-order Roe scheme is adopted
by Alcrudo and Garcia-Navarro [8], Anastasiou and Chan [9], Sleigh et al. [10], Tseng [11],
Tseng and Chu [12], and Brufau and Garcia-Navarro [13]; the second-order HLL scheme
is employed by Mingham and Causon [14], Hu et al. [15], Causon et al. [16], and Valiani
et al. [17]; and the �rst-order HLLC scheme, where C stands for Contact, is applied by Zoppou
and Roberts [18]. The comparisons of di�erent �rst- and second-order-accurate schemes can
also be found in several articles. For instance, Zhao et al. [19] compared the numerical accu-
racy, e�ciency and stability of three �rst-order upwind schemes, including the Osher, the Roe,
and the SWS schemes. Lin et al. [20] compared four second-order FVS schemes, including
the Liou–Ste�en splitting (LSS), the VLS, the SWS, and the LLFS schemes. Comprehensive
comparisons of the performance of �nite-volume solutions to SWE by �ve shock-capturing
upwind schemes, namely the Osher, HLL, HLLC, Roe and the SWS schemes, were reported
by Erduran et al. [21]. Among the �ve schemes, they found that the Osher scheme is the
most accurate but quite complex to implement. According to the above literature review, with
higher accuracy comparing to FVS-type schemes the FDS-type schemes such as the Osher,
Roe and HLL schemes are popularly employed for solving SWE.
More recently, an arti�cially upstream FVS method for solving the Euler equations has

been proposed by Sun and Takayama [22]. This upwind method splits the �ux vector into two
simple �ux vectors by introducing two arti�cial wave speeds. One �ux vector is discretized
using the Steger–Warming approach. The other �ux vector is easily solved by one-side upwind
di�erencing. Unlike the well-known Roe �nite di�erence splitting method, this method does
not need any matrix operation and avoids the expansion shocks without any additional entropy
�x. Moreover, its accuracy is comparable with the exact Riemann solver. The purpose of this
present study is to adopt this upwind method to solve the 2D SWE based on the framework
of the FVM.
Adopting the FVM, the 2D problem for solving SWE is reduced to a number of local

1D Riemann problems in the direction normal to the cell interface. The arti�cially upstream
FVS method is then employed to formulate the numerical �ux function for the solution of the
local Riemann problem. Based on this algorithm, a �rst-order upstream �ux-splitting �nite-
volume (UFF) scheme is proposed. To evaluate the numerical performances for solving SWE,
the three FDS-type schemes, namely the Osher, Roe and HLL schemes, are selected to
compare with the proposed UFF scheme. The second-order extension of the UFF scheme
is achieved based on the monotonic upstream schemes for conservation laws (MUSCL)
method [1, 2]. The proposed �rst-order and second-order schemes are applied to simulate
four shallow water �ows, including the 1D idealized dam-break problem, the oblique hy-
draulic jump, the circular dam-break problem, and the dam-break experiment with 45◦ bend
channel.
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2. GOVERNING EQUATIONS

The conservative form of the 2D SWE can be written in vector notation as [23, 24]

@Q
@t
+
@F
@x
+
@G
@y
=S (1)

in which

Q=

⎡
⎢⎢⎣
h

hu

hv

⎤
⎥⎥⎦ ; F=

⎡
⎢⎢⎢⎣

hu

hu2 +
gh2

2
huv

⎤
⎥⎥⎥⎦ ; G=

⎡
⎢⎢⎢⎢⎣

hv

huv

hv2 +
gh2

2

⎤
⎥⎥⎥⎥⎦ ; S=

⎡
⎢⎢⎣

0

gh(s0x − sfx)
gh(s0y − sfy)

⎤
⎥⎥⎦ (2)

where Q is the vector of conserved variable; F and G are the �ux vectors in the x- and y-
directions, respectively; S is a source term vector; h is the water depth; u and v are the depth-
averaged velocity components in the x- and y-directions, respectively; g is the acceleration
due to gravity; sfx and sfy are the bed friction slopes in the x- and y-directions, respectively;
and s0x and s0y are the bed slopes in the x- and y-directions, respectively. The bed friction
slopes are estimated using the Manning formula

sfx=
un2m

√
u2 + v2

h4=3
; sfy=

vn2m
√
u2 + v2

h4=3
(3)

in which nm is Manning’s roughness coe�cient.

3. NUMERICAL SCHEME

3.1. Discretization in �nite-volume method

Discretization using the FVM is based on the integral form of the conservation equations.
Integrating Equation (1) over an arbitrary control volume � gives∫∫

�

@Q
@t
dW +

∫∫
�

∇ ·E dW =
∫∫

�
S dW (4)

in which dW is the area element and the �ux vector E=[F;G]T. Using the divergence
theorem, one can obtain the basic equation of FVM as follows:∫∫

�

@Q
@t
dW +

∫
@�
E · n dl=

∫∫
�
S dW (5)

where @� is the boundary of the control volume �; n is the outward unit vector normal to
the @�; dl is the arc element; and the integrand E · n is the normal �ux across a surface with
normal n. The vector of conserved variables Q is assumed to be constant over each cell.
Hence, the basic vector equation of the FVM can be further discretized as

A
dQ
dt
+

M∑
m=1
Emn L

m=AS (6)
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where A is the area of the cell; m is the index that represents the side of the cell; M is the
total number of the sides for the cell; Emn is the normal �ux across each side m separating
two neighbouring cells; and Lm is the length of the m side for the cell. For convenience, the
superscript m will be omitted hereafter. It will be only used for the length Lm as a reminder.
Based on the rotational invariance property of the governing equations [23], the interface

�ux normal to each side m is expressed as

En(Q)=T(�)−1F( �Q) (7)

where � is the angle between the outward unit vector n and the x-axis; �Q=T(�)Q is the
vector variables transformed from Q; F( �Q)=T(�)En(Q) is the transformed normal �ux; T(�)
is the transformation matrix which can be obtained by rotating the coordinate axes; and T(�)−1

is the inverse transformation matrix. Substituting Equation (7) into Equation (6) leads to

A
dQ
dt
+

M∑
m=1
T(�)−1F( �Q)Lm=AS (8)

where �Q=[h; hun; hvt]T; F( �Q)= [hun; hu2n + gh2=2; hunvt]T; and un and vt are, respectively, the
�ow velocity components in �x (normal) and �y (tangential) directions, which are given by
un = u cos �+ v sin � and vt = v cos �− u sin �.

3.2. Upstream �ux-splitting �nite-volume (UFF) scheme

In practice, it is not always possible to use the FVM to solve Equation (8) directly when the
source terms exist. To deal with the source terms, the fractional splitting technique [24] is
employed herein. The splitting can be expressed as

Qn+1 = I (�t)H (�t)(Qn) (9)

where I (�t) and H (�t) are operators corresponding to solutions of the inhomogeneous (source
terms) and the homogeneous parts, respectively; n is the time index; and �t is the time
increment.
Based on Equation (9), Equation (8) becomes

dQ
dt
+
1
A

M∑
m=1
T(�)−1F( �Q)Lm = 0 (10a)

dQ
dt
= S (10b)

In this paper, Equation (10a) (homogeneous part) is solved using Euler’s method [21].
In addition, Equation (10b) (inhomogeneous part) can be solved by taking the conservative
values calculated at the previous time step as initial values [21]. Therefore, the conservative
�nite-volume scheme is formulated as

Q̂i; j =Q
n
i; j − �t

Ai; j

[
M∑
m= 1

T(�)−1F(1)( �Q)Lm
]
i; j

(11a)

Qn+1
i; j = Q̂i; j +�tS(Q̂i; j) (11b)
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where i and j are the space indexes; Ai; j is the area for the cell (i; j); Qn
i; j is the vector of

conserved variables for the cell (i; j) at time index n; Q̂i; j is the vector of predicted variables
on the cell centre (i; j); S(Q̂i; j) is the vector of the source terms based on the predicted
variables; Qn+1

i; j is the vector of conserved variables for the cell (i; j) at next time step n+1;
and F(1)( �Q) is the �rst-order numerical �ux.

3.2.1. The local Riemann problem. In Equation (11a), the estimation of the numerical �ux is
required to obtain the solutions. Because of the rotational invariance property, the 2D problem
in Equation (8) can be dealt with as a series of 1D local problems in the direction normal
to the cell interface. The Riemann problem is an initial value problem, which can be written
as [20]

@ �Q
@t
+
@[F( �Q)]
@ �x

=0 (12a)

with

�Q(�x; 0) =

⎧⎨
⎩
�QL �x¡0

�QR �x¿0
(12b)

As illustrated in Figure 1, the origin of the �x-axis is located at the midpoint of the cell
interface along outward normal direction. The F( �Q) is a normal outward �ux at the origin of
a local axis �x. The conserved vectors �QL and �QR represent the transformed quantities on the
left and the right cells of the cell interface, respectively.
Many numerical �ux functions of the shock-capturing upwind schemes can be adopted for

Equation (12), such as the Osher, the Roe, and the HLL schemes. In this paper, the arti�cially
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Figure 1. The �nite-volume cell � and the Riemann interface.
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upstream FVS method proposed by Sun and Takayama [22] is employed to estimate the
numerical �ux FLR( �QL; �QR) through each cell interface as shown in Figure 1.

3.2.2. The formulation of the numerical �ux function. According to the algorithm of the
arti�cially upstream FVS method [22], the normal outward �ux F( �Q) can be decomposed
into a convective component un �Q and a pressure component P as

F( �Q) =

⎡
⎢⎢⎢⎣

hun

hu2n +
gh2

2
hunvt

⎤
⎥⎥⎥⎦ = un

⎡
⎢⎢⎣
h

hun

hvt

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0

p

0

⎤
⎥⎥⎦ = un �Q+ P (13)

where p= gh2=2 is the hydrostatic pressure for shallow water �ows. The fundamental idea
of the arti�cially upstream FVS method is to split the �ux vector F( �Q) in Equation (13) by
introducing a weighting parameter K and two wave speeds (s1 and s2):

F( �Q) = (1− K)[(un − s1) �Q+ P] + K[(un − s2) �Q+ P] = (1− K)F1 + KF2 (14)

where F1 = (un − s1) �Q+ P; F2 = (un − s2) �Q+ P; and K is de�ned as

K =
s1

s1 − s2 (15)

Therefore, these two �ux vectors, F1 and F2, are, respectively, di�erent from the original F( �Q)
because of the auxiliary terms −s1 �Q and −s2 �Q. Their corresponding matrixes of eigenvalues
are diagonal (un − s1 − c; un − s1; un − s1 + c) and diagonal (un − s2 − c; un − s2; un − s2 + c),
respectively. The local wave celerity is given by c=

√
gh.

Obviously, the eigenvalues of the �ux vectors F1 and F2 can be changed by varying the
introduced wave speeds s1 and s2. Hence, appropriate values of s1 and s2 may be adopted
to simplify the upwinding discretization of the governing equations. Following the choices of
the wave speeds proposed by Sun and Takayama [22], s1 and s2 are expressed as

s1 = un; s2 =

{
un − c if s1¿0

un + c if s160
(16)

and then the two splitted �ux vectors become

F1 =P; F2 = (un − s2) �Q+ P (17)

Since the eigenvalues of the Jacobian matrix of �ux vector F1 become (−c; 0;+c), the
numerical discretization of F1 can be derived following the Steger–Warming approach [1].
The corresponding numerical �ux FLR;1 can be expressed as

FLR;1 = 1
2(PL + PR) +� �Qav (18)
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where � �Qav represents the numerical viscosity, which is given by

� �Qav =
1
2cL

⎡
⎢⎢⎣
p

pun

pvt

⎤
⎥⎥⎦
L

− 1
2cR

⎡
⎢⎢⎣
p

pun

pvt

⎤
⎥⎥⎦
R

(19)

In Equation (19), the values of cL and cR can be replaced by an intermediate wave celerity
cLR for improving the numerical accuracy [25]. Thus, Equation (19) becomes

� �Qav =
1
2cLR

⎡
⎢⎢⎣

pL − pR
(pun)L − (pun)R
(pvt)L − (pvt)R

⎤
⎥⎥⎦ (20)

The eigenvalues of the Jacobian matrix for the second �ux vector F2 still maintains the
property that is either all non-negative or all non-positive. Therefore, �ux vector F2 can be
easily upwinded based on the sign of the wave speed s1. The corresponding numerical �ux
FLR;2 is given by

FLR;2 = [(un)L=R − s2] �QL=R + PL=R (21)

where the subscript L=R is de�ned as

L=R=

{
L if s1¿0

R if s160
(22)

To completely determine the numerical �uxes in Equations (18) and (21), the estimations
of cLR, s1 and s2 are required. For improving numerical accuracy, the concept of the com-
mon wave speed, cLR = max(cL; cR), introduced by Wada and Lious [25] is employed herein
to replace the algebraic average, cLR =0:5(cL + cR), proposed by Sun and Takayama [22].
Numerical values of s1 and s2 can be computed from

s1 = 1
2(unL + unR) (23a)

s2 =

{
min(0; unL − cL; u∗

n − c∗) if s1¿0

max(0; unR + cR ; u∗
n + c

∗) if s160
(23b)

in which u∗
n and c

∗ is estimated using the exact solutions given by Toro [24]

u∗
n =

1
2(unL + unR) + cL − cR (24a)

c∗ = 1
2(cL + cR) +

1
4(unL − unR) (24b)

Accordingly, the interface numerical �ux FLR is expressed as

FLR = (1− K)FLR;1 + KFLR;2 (25)
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Figure 2. The computational cells in the x–y coordinates.

Substituting Equations (18) and (21) into Equation (25) results in the �rst-order numerical
�ux function:

FLR( �QL; �QR) = (1− K)[ 12 (PL + PR) +� �Qav] + K[(un)L=R − s2] �QL=R + KPL=R (26)

Equation (26) shows that only the variables of the neighbouring cells (i.e. �QL and �QR) are
used to calculate the numerical �ux FLR through each cell interface. It is also shown that the
proposed numerical �ux function does not need any Jacobian matrix operation for estimating
the cell interface �ux.
Based on Equation (26), the �rst-order numerical �ux through the cell interface (i+1=2; j)

in Equation (11a) can be expressed as

F(1)( �Q)=FLR( �QL; �QR)=FLR( �Q
n
i; j ; �Q

n
i+1; j) (27)

where �Qn
i; j is the vector of transformed variables for the cell (i; j) at time index n. The compu-

tational cells in the x–y coordinate system are illustrated in Figure 2. By using
Equation (27) to obtain the �rst-order numerical �ux, Equation (11) leads to the UFF scheme.

3.3. Second-order extension

To obtain second-order accuracy in space, the MUSCL method [1, 2] is adopted herein. In
addition, the predictor–corrector method for time integration [1] is used to achieve second-
order accuracy in time. Therefore, Equation (8) can be further discretized as

Q̂i; j=Q
n
i; j − �t

2Ai; j

[
M∑
m=1
T(�)−1F(1)( �Q)Lm

]
i; j

+
�t
2
S(Qn

i; j) (28a)

Qn+1
i; j =Q

n
i; j − �t

Ai; j

[
M∑
m=1
T(�)−1F(2)( �Q)Lm

]
i; j

+�tS(Q̂i; j) (28b)
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where the �rst-order numerical �ux has been de�ned in Equation (27), and F(2)( �Q) is the
numerical �ux with second-order accuracy in space. The second-order numerical �ux F(2)( �Q)
through the cell interface (i+1=2; j) can be obtained from the proposed numerical �ux function

F(2)( �Q) = FLR( �QL
i+1=2; j ; �Q

R
i+1=2; j) (29)

where �QL
i+1=2; j and �QR

i+1=2; j are the left and right cell-interface variables, respectively. Based
on the MUSCL method, the values of conserved variables on the left and right of the cell
interface (i + 1=2; j) are

�QL
i+1=2; j =T(�)Q̂i; j +

1
2
��i; j (30a)

�QR
i+1=2; j =T(�)Q̂i+1; j − 1

2
��i+1; j (30b)

in which ��i; j = ��i; j(�i+1=2; j ;�i−1=2; j) is a nonlinear slope limiter function for the cell (i; j).
The van Leer limiter function is employed herein:

��i; j=[sgn(�i+1=2; j) + sgn(�i−1=2; j)]
|�i+1=2; j| · |�i−1=2; j|
|�i+1=2; j|+ |�i−1=2; j| (31)

where �i−1=2; j= �Qn
i; j − �Qn

i−1;j, �i+1=2; j= �Qn
i+1; j − �Qn

i; j, and sgn refers to the sign function [1].
The second-order extension of the UFF scheme is denoted as the UFF-MUSCL scheme in
the following sections.

3.4. Stability and boundary conditions

To ensure numerical stability of the proposed schemes, the time step �t must be restricted
by the Courant–Friedrichs–Lewy (CFL) stability condition [17], which is expressed as

CFL =
�t

min[di; j]
max

[(√
u2 + v2 +

√
gh

)
i; j

]
61 (32)

where i; j are the cell indexes and di; j indicates the whole set of distances between the i; jth
centroid and the centroids of the four adjacent cells.
The boundary conditions used herein are divided into two di�erent types: the land boundary

and the open boundary [19, 24]. At the land boundary, the velocity normal to the land is set
to be zero to represent no �ux through the boundary. The land boundary condition is speci�ed
as:

hR = hL; unR = − unL; vtR = vtL (33)

where the variables with subscript L and R are the known and the unknown states, respectively.
Besides, the subscripts R and L stand for the right and left Riemann states, respectively, at a
cell interface boundary. At the open boundary, two di�erent boundary conditions, supercritical
in�ow at upstream in�ow boundary and transmissive at downstream out�ow boundary, are

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1149–1174
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used herein. For the supercritical in�ow boundary condition, three variables (i.e. hR, unR and
vtR) are given. The transmissive boundary allows waves to pass through without re�ection,
and its condition is given as

hR = hL; unR = unL; vtR = vtL (34)

4. NUMERICAL RESULTS AND DISCUSSIONS

The numerical performance of the proposed �rst-order UFF scheme and its second-order
extension UFF-MUSCL scheme will be evaluated through modelling some well-known shallow
water �ow problems, including the 1D idealized dam breaking, the oblique hydraulic jump,
the circular dam breaking, and the dam-break experiment with 45◦ bend channel. Except the
test problem of the dam-break experiment, three well-known upwind schemes, including the
Osher, Roe, and HLL schemes, are selected to compare with the proposed UFF scheme for
the evaluation of the numerical performance. All of the tests were performed on a Pentium
IV equipped with a 256 MB RAM.

4.1. 1D idealized dam-break �ow

The 1D idealized dam-break problem is applied to test the shock-capturing capabilities of the
UFF scheme. The idealized dam-break �ow problem in a rectangular, frictionless, and hori-
zontal channel is illustrated in Figure 3, where hu and hd are initial water depths upstream and
downstream of the dam, respectively. A channel with 2000m in length and 10m in width
is considered. A dam is located at the middle of the channel. At time t=0+, the dam is
broken instantaneously. A shock wave travelling downstream and a rarefaction wave moving
upstream are then created. The initial upstream water depth is 10 m, and the corresponding
initial downstream water depths are given as 5; 0:1 and 0m, respectively, for each test. Thus,
three test cases with water depth ratios hd=hu of 0:5; 0:01, and 0 (dry bed condition) are
considered. In the extreme test case (dry bed condition), an almost negligible water depth
of 0:00001 m is assumed at the downstream of the dam to avoid the mathematical di�culty.
The CFL number is set to be 0.95, and 100 computational cells are used for all test cases. The

Depth ratio=hd / hu

hu

hd

Dam

Figure 3. A schematic representation of 1D dam-break problem.
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schemes for a water depth ratio hd=hu of 0.01.

simulation time is 50 s for test cases with water depth ratios of 0.5 and 0.01. For the test
case with dry bed condition, the simulation time is 30 s after dam break. The exact solutions
can be found in Reference [26].
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Comparison of the exact solutions with the simulated water depths using the four �rst-order
upwind schemes for a water depth ratio of 0.5 is shown in Figure 4. As shown in Figure 4
with the close-up of the shock wave front as well as the head of the rarefaction wave, all
schemes provide solutions without any spurious oscillations. The Osher scheme presents the
most accurate solution of the shock wave front, whereas the HLL scheme yields more di�usive
results. Among the schemes tested, the proposed UFF scheme has the best resolution of the
head of the rarefaction wave.
For the test case with a water depth ratio of 0.01, as shown in Figure 5, the Roe scheme

produces the expansion shock at the dam site, whereas the UFF, Osher and HLL schemes do
not. Hence, the formula of entropy correction given by Harten and Hyman [1] is employed
for the Roe scheme afterward. Results of comparisons in this test case are similar to those
in the previous test case for the resolution of the shock front and the head of the rarefaction
wave. The simulated results at the dam site also show that the UFF scheme produces the best
resolution. Unlike the Roe scheme, the UFF scheme satisfying entropy condition can resolve
the rarefaction wave smoothly at the dam site. For the test case with dry bed condition, as
shown in Figure 6, the UFF scheme gives the best resolutions of the rarefaction wave at the
dam site as well as at the head. The simulated wet=dry front by the UFF scheme �ts the exact
solution much more smoothly and closely than that by other presented schemes.
To show the in�uence of the CFL number on the simulated results, di�erent CFL numbers

are considered herein with �xed cell size of 20m. Using the �rst-order UFF scheme, Figure 7
shows the in�uence of the CFL number on the simulated water depth for the test case with
the water depth ratio hd=hu of 0.01. It is clear that the proposed scheme do not produce
oscillations in the solutions even if the CFL number equals one. In addition, the scheme with
a higher CFL can achieve better resolution of the shock front.
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To evaluate the numerical accuracy quantitatively, two di�erent error norms, L2 (overall
error norm) and L∞ (max error norm), are used herein [27].

L2 =

√∑
(Y simi; j − Y exacti; j )2∑
(Y exacti; j )2

; L∞=
max |Y simi; j − Y exacti; j |
max |Y exacti; j | (35)

where Y simi; j and Y exacti; j are the simulated solution and the exact solution at cell (i; j), respec-
tively. Table I summarizes the error norms of the water depth and CPU time for water depth
ratios of 0:5; 0:01 and 0. The results show that the proposed UFF scheme yields the smallest
L2 norm of water depth, whereas the HLL scheme gives the largest those. As listed in Ta-
ble I, for the test cases with water depth ratios of 0.5 and 0.01, the values of the L∞ norms
indicate that the Osher scheme presents better solutions near the shock front. Nevertheless,
for the test case with dry bed condition downstream, the UFF scheme performs the most
accurate solutions in the entire simulation domain. Accordingly, the UFF scheme consumes
the shortest CPU time, whereas the Roe scheme takes the longest one.
Based on the analyses of the above tested cases, the UFF scheme can avoid the entropy-

violating solution and it resolves rarefaction wave more smoothly as well as accurately at the
dam site. Although the Osher scheme performs better solutions near the shock front locally
referring to the smallest L∞ in Table I for the test cases with water depth ratios of 0.5 and
0.01, the proposed UFF scheme achieves superior overall numerical accuracy and e�ciency
among the schemes tested. Furthermore, the UFF scheme can simulate the wet=dry wave front
passing over a dry bed condition downstream well.
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Table I. Simulated results for the 1D idealized dam-break problem using �rst-order schemes.

hd=hu = 0:5 hd=hu = 0:01 hd=hu = 0

Schemes L2 L∞ CPU (s) L2 L∞ CPU (s) L2 L∞ CPU (s)

UFF 0.0155 0.0695 0.058 0.0319 0.1612 0.076 0.0168 0.0474 0.045

Osher 0.0158 0.0619 0.077 0.0321 0.1392 0.101 0.0233 0.0539 0.061
Roe 0.0169 0.0688 0.102 0.0361 0.1612 0.136 0.0259 0.0561 0.079
HLL 0.0212 0.0825 0.071 0.0406 0.1629 0.091 0.0326 0.0656 0.055

Shock front

�
�

O

Figure 8. The plan view of the oblique shock front.

4.2. Oblique hydraulic jump

When a converging vertical boundary is de�ected along the channel contraction through an
angle � inward the supercritical �ow, an oblique hydraulic jump originating at point O can
be formed with an angle of � as shown in Figure 8. This test problem in steady supercritical
�ow has been commonly adopted and simulated by researchers [8, 11, 12, 15, 16, 20, 21]. In the
converging channel with zero bed slope, the angle between the converging wall and the �ow
direction is taken as �=8:95◦. Figure 9 shows the geometry and the computational mesh, in
which 80× 60 non-rectangular cells are used. The initial conditions corresponding to a Froude
number of 2.74 are given by: the water depth of 1 m, the velocity component u of 8:57 m=s
and v of zero. At the upstream in�ow boundary, the supercritical in�ow boundary conditions
of h=1m, u=8:57m=s and v=0m=s are imposed. The transmissive boundary conditions are
given using Equation (34) at the downstream out�ow boundary. The computational time step
is taken as 0:02 s. To obtain a steady-state solution, a convergence criterion in terms of the
relative error R is de�ned as

R=

√∑
(hn+1i; j − hni; j)2∑
(hni; j)2

61:0× 10−5 (36)

where hni; j and h
n+1
i; j are the local water depths at the time steps n and n+ 1, respectively.

Figure 10 shows the comparison between the exact solutions and the simulated water depths
using the UFF, Osher, Roe and HLL schemes along line EGH illustrated in Figure 9. The
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Figure 9. The geometry and the computational mesh for the 2D oblique hydraulic jump problem.
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Figure 10. Comparisons of the exact solutions with the simulated water depth pro�les along line EGH
(see Figure 9) using �rst-order schemes.

exact solutions can be found in Reference [28]. As shown in Figure 10, the oblique hydraulic
jump is captured well by all schemes. However, from the close-up near the shock front shown
in Figure 10, the proposed UFF scheme even resolves the jump slightly sharper than the other
schemes.
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Table II. Simulated results for the oblique hydraulic jump problem using �rst-order schemes.

CPU time for
L2 norm of shock convergence criterion

Scheme L2 norm of depth L2 norm of velocity angle (s)

UFF 0.035 0.0058 0.0030 15.63

Osher 0.037 0.0061 0.0036 21.02
Roe 0.039 0.0063 0.0042 29.05
HLL 0.041 0.0068 0.0044 19.26

Contour interval = 0.05 m
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Figure 11. The contour plots of the 2D oblique hydraulic jump using: (a) UFF; and
(b) UFF-MUSCL schemes.

Table II lists the simulated results, including the L2 norms of water depth, velocity, and
shock angle. The CPU time for reaching the convergence criterion is also presented in Table II.
It is found that the proposed UFF scheme has the best numerical accuracy and e�ciency. In
addition, Figures 11(a) and 11(b) show the simulated water depth contours of the steady
state solutions using the UFF and UFF-MUSCL schemes, respectively. The simulated results
show no oscillations produced for both schemes. Certainly, the second-order UFF-MUSCL
scheme presents a better resolution than the �rst-order UFF scheme. From the simulated results
presented above, we may conclude that the UFF scheme has the best numerical performance
in modelling the 2D oblique hydraulic jump problem.

4.3. Circular dam-break �ow

This problem is designed to test the capability of the proposed scheme in modelling 2D
symmetric discontinuous free surfaces. Numerical results for this test problem can be found
in References [8, 11, 14, 21]. Figure 12 shows the geometry, in which a cylindrical dam
with radius 11 m is located in the middle of the computational domain. The circular mesh
(Figure 13) consisting of 50 cells in the tangential direction and 25 cells of 1m length along
the radial direction is employed herein.
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Figure 12. The geometry for the 2D circular dam-break problem.

x (m)

y 
(m

)

-20 -10 0 10 20

-20

-10

0

10

20

S T

Figure 13. The computational mesh for the 2D circular dam-break problem.
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Figure 14. Comparisons of the: (a) simulated water depth pro�les; and (b) Froude numbers along line
ST (see Figure 13) using �rst-order schemes.

The initial condition comprises two regions of still water depth separated by the cylin-
drical dam, at which water depth inside the dam is 10 m and outside the dam is 1 m. The
computational time step is 0:02 s. Figures 14(a) and 14(b) show, respectively, the simulated
water depths and the Froude numbers using all presented �rst-order schemes along line ST at
t=0:69 s. The results show that the Osher and the Roe schemes produce signi�cant glitches
at the dam site whereas the proposed UFF and the HLL schemes do not. The glitch stands
for the disadvantage of the Osher and the Roe schemes whereas the solution at the dam site
should be a smooth water surface pro�le for rarefaction wave. Besides, the �ow at the dam
site is the critical �ow [24], i.e. the exact solution of the Froude number (NF) should be
equal to one, which is very useful for comparison. From the close-up view of dam site in
Figure 14(b), the simulated Froude number by the proposed UFF scheme produces the closest
value to the exact solution (i.e. NF =1). On the other hand, the CPU time required is 10:52 s
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Figure 15. (a) The 2D contour plot; and (b) 3D free-surface view showing water depth variations for
the circular dam breaking at t=0:69 s using the UFF-MUSCL scheme.

Table III. In�uence of the computational mesh on the simulated Froude number at the dam
site for 2D circular dam-break problem.

Number of cells in Number of cells in
the tangential the radial

Mesh direction direction UFF Osher Roe HLL

M1 50 25 0.815 0.731 0.705 0.762
M2 100 50 0.892 0.841 0.831 0.857
M3 200 100 0.935 0.905 0.905 0.911
M4 300 150 0.965 0.942 0.938 0.956
M5 400 200 0.985 0.972 0.971 0.981

for the UFF scheme. The ratios of the CPU time consumed by the Osher, Roe and HLL
schemes to that required by the UFF scheme are 1:25; 1:82, and 1.36, respectively. From the
above comparisons, it is found that the UFF scheme is the most accurate and e�cient among
the schemes presented.
The 2D contour as well as the 3D view of the water surface elevation at t=0:69s computed

by the second-order UFF-MUSCL scheme are shown in Figures 15(a) and 15(b), respectively.
The simulated results show that there is an outward-propagating circular shock wave and an
inward-propagating circular rarefaction wave. The perfect symmetric �ow behaviour agrees
very well with those found in References [8, 11, 14, 21].
To further demonstrate the numerical performance of the proposed UFF scheme, a grid

convergence study known as the grid re�nement study is performed herein [29]. Five di�erent
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Figure 17. Comparison of the convergence curves using �rst-order schemes.

meshes (M1–M5), each with twice the number of cells in the tangential and the radial direction
as the previous mesh, are considered. Table III lists the mesh information and the resulting
Froude number simulated at the dam site by four �rst-order upwind schemes. Figure 16 shows
the in�uence of the computational mesh on simulated Froude number using the UFF scheme.
As the number of computational cells increases, the simulated Froude number approaches to
the exact solution (NF =1) at the dam site. The results also show the UFF scheme performs
the best solution at the dam site. The convergence curve with varying cell number is shows
in Figure 17, where the number of cells is normalized by the cell number of the coarsest
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mesh (M1). Each solution is properly converged with respect to iterations and an almost mesh
independent solution (i.e. NF =1) is achieved using the UFF scheme with the M5 mesh.

4.4. Dam-break experiment with 45◦ bend channel

This section tests the capability of the proposed UFF and its second-order extension UFF-
MUSCL scheme in modelling 2D dam-break �ow over a channel with a 45◦ bend. The
dam-break experiment with a 45◦ bend channel was carried out by Sorares et al. [30] at the
Catholic University of Louvain, Belgium; more details can be found in Toro’s book [24]. The
experimental domain consists of a rectangular reservoir connected to a channel containing a
45◦ bend, as shown in Figure 18.
Both the reservoir and the channel are horizontal and connected by a dam. The geometry

of the experiment layout and the locations of the observation stations in the physical model
are given in Figure 18. The initial water depths are 0:25m in the reservoir and 0:01m in the
channel. The total simulation time is 45s after dam break. Manning’s roughness coe�cient nm
for bed friction is calibrated to be 0.011. The computational mesh with 3950 non-rectangular
cells is used.
Using the UFF scheme and its second-order UFF-MUSCL scheme, the comparisons of

the simulated water depth hydrographs with the experimental data at di�erent observation
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Figure 18. The layout of the dam-break experiment with 45◦ bend channel.
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Figure 19. Comparisons of the measured and simulated water depths against time at Station:
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dam-break experiment with 45◦ bend channel.
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Figure 20. The simulated: (a) 2D contour plot; and (b) 3D free-surface view showing water depth
variations for the dam-break experiment at t=0:5 s by the UFF-MUSCL scheme.

stations are made in Figure 19. The results show shock waves propagating toward downstream
channel and re�ecting on the channel bend boundaries. The rarefaction wave travels into the
reservoir. For all observation stations shown in Figure 19, the simulated water depths agree
well with the measured. Although experimental data give remarkable oscillatory behaviours,
the UFF and its second-order extension UFF-MUSCL schemes present satisfactory overall
solutions. Obviously, the simulated results of the re�ections from the bend by the UFF-
MUSCL scheme are better captured, while the UFF scheme gives smoother solutions, typically
shown in Figures 19(b), 19(c) and 19(d) for observation stations G2;G3 and G4, respectively.
The simulated 2D contour plot and 3D free-surface view showing water depth variations at
t=0:5 s using the UFF-MUSCL scheme are shown in Figures 20(a) and 20(b), respectively.
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Figure 21. The simulated: (a) 2D contour plot; and (b) 3D free-surface view showing water depth
variations for the dam-break experiment at t=4:0 s by the UFF-MUSCL scheme.

Figure 21 shows the simulated water depth variations at t=4:0s. By this moment the propagat-
ing shock wave front has reached the bend, and it has re�ected and di�racted. It continues to
travel along the downstream section after the corner of the bend. The application demonstrates
the capability of the proposed scheme in modelling the complicated �ow structure.

5. CONCLUSIONS

The arti�cially upstream �ux vector splitting method developed by Sun and Takayama [22]
is adopted to estimate the numerical �ux through cell interface for the solution of the local
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Riemann problem. By applying the corresponding numerical �ux function, the upstream �ux-
splitting �nite-volume (UFF) scheme is proposed for solving the 2D SWE in the framework of
the FVM. The MUSCL method and the predictor–corrector approach are employed to achieve
the second-order-accurate extension in space and in time, respectively.
The numerical performance of the proposed UFF scheme is compared with those of the

Osher, Roe and HLL schemes for the 1D idealized dam break, 2D steady oblique hydraulic
jump and 2D circular dam-break problems. Based on the simulated results of the 1D idealized
dam-break problem, it is found that the UFF scheme presents superior overall numerical
accuracy as well as e�ciency because it produces the least L2 error norm and consumes the
smallest CPU time. Due to satisfaction of the entropy condition, the UFF scheme can resolve
rarefaction wave smoothly and accurately at the dam site. Furthermore, the UFF scheme can
simulate the wet=dry wave front passing over a dry bed condition downstream well.
According to the simulated results of the 2D oblique hydraulic jump problem, the UFF

scheme also obtains superior overall numerical performances among the schemes tested. From
the simulated results of the 2D circular dam-break problem, the UFF scheme presents the
best numerical e�ciency and provides good agreement with the results reported by other
researchers [8, 11, 14, 21]. A grid convergence study is also tested for the 2D circular dam-
break problem to conclude that the UFF scheme performs the best solution at the dam site.
Moreover, the applications of the UFF and UFF-MUSCL schemes to the dam-break experi-
ment with a 45◦ bend channel demonstrate the capability and reliability of dam-break �ow
simulation. From the above analyses, the proposed schemes are simple, accurate, e�cient and
suitable for modelling shallow water �ows containing discontinuities.
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